ABERRANT PLATELET ACTIVATION IN METABOLIC SYNDROME

Sang-Yong Kim

Division of Endocrinology, Department of Internal Medicine, School of Medicine, Chosun University

Introduction

	Categorical cutpoints
Increased waist circumference*	Population-specific and country-specific definitions
Increased triglycerides (drug treatment for elevated TG is alternate indicator†)	≥150 mg/dL (1.7mmol/L)
Reduced HDL cholesterol (drug treatment for reduced HDL cholesterol is alternate indicator†)	<40 mg/dL (1·0 mmol/L) in men; <50 mg/dL (1·3 mmol/L) in women
Increased blood pressure (antihypertensive drug treatment in patient with history of hypertension is alternate indicator)	Systolic \ge 130 and/or diastolic \ge 85 mm Hg
Increased fasting glucose‡ (drug treatment of increased glucose is alternate indicator)	> 100 mg/dL (5·5 mmol/L)

*It is recommended that the IDF cutpoints be used for non-Europeans and either the IDF or AHA/NHLBI cutpoints used for people of European origin until more data are available. \pm Most commonly used drugs for increased triglycerides and reduced HDL cholesterol are fibrates and nicotinic acid. A patient on one of these drugs can be presumed to have high triglycerides and low HDL. Use of high-dose ω -3 fatty acids presumes high triglycerides. \pm Most patients with type 2 diabetes will have the metabolic syndrome by the proposed criteria.

Table: Criteria for clinical diagnosis of metabolic syndrome

The Metabolic Syndrome, Lancet 2010; 375: 181–183

Why metabolic syndrome?

J Am Coll Cardiol. 2007;49:403–414.

Today's talk

Evidence and markers of platelet hyperactivity

Factors associated platelet hyperactivity in obesity and MS

Influences of anti-obesity therapy on platelet function

Anti-platelet agent use for metabolic syndrome

Evidence and markers of platelet hyperactivity

N Engl J Med 2007; 357: 2482–2494

Mean platelet volume(MPV) : a parameter mirroring in vivo platelet activation

Thromb Res 2007; **120:**245–250 *Clin Invest Med* 2011;34:330-335

Mean platelet volume(MPV) : a parameter mirroring in vivo platelet activation

Table I. Clinical and biochemical characteristics by glucose tolerance status.

	Total	Normal glucose tolerance (HbA1c < 5.7% and FPG < 100 mg/dl)	Intermediate hyperglycemia ($5.7\% \le HbA1c < 6.5\%$ or $100 \text{ mg/dl} \le FPG < 126 \text{ mg/dl}$)	Diabetes (HbA1c $\ge 6.5\%$ or FPG ≥ 126 mg/dl)	P-value
n	3098	1785	1192	121	
Sex					< 0.0001
Men	1728 (55.8%)	940 (52.7%)	700 (58.7%)	88 (72.7%)	
Women	1370 (44.2%)	845 (47.3%)	492 (41.3%)	33 (27.3%)	
Age (years)	46.29 ± 10.61	43.62 ± 9.79^{a}	49.68 ± 10.57^{b}	$52.31 \pm 10.69^{\circ}$	< 0.0001
BMI (kg/m ²)	23.63 ± 3.02	23.09 ± 2.95^{a}	24.22 ± 2.91^{b}	$25.38 \pm 3.36^{\circ}$	< 0.0001
WC (cm)	82.73 ± 8.30	80.94 ± 8.13^{a}	84.83 ± 7.77^{b}	$88.40 \pm 8.41^{\circ}$	< 0.0001
SBP (mmHg)	121.51 ± 13.53	119.63 ± 13.45^{a}	123.53 ± 13.05^{b}	$129.40 \pm 13.72^{\circ}$	< 0.0001
DBP (mmHg)	73.64 ± 10.44	72.32 ± 10.34^{a}	75.14 ± 10.32^{b}	$78.25 \pm 9.73^{\circ}$	< 0.0001
WBC (10 ³ cells/µl)	6.00 ± 1.39	5.87 ± 1.37^{a}	6.11 ± 1.39^{a}	6.76 ± 1.34^{b}	
Hemoglobin (g/dl)	14.48 ± 1.35	14.44 ± 1.35^{a}	14.51 ± 1.36^{a}	14.96 ± 1.22^{b}	
Plt (count/mm ³)	256.46 ± 50.34	251.94 ± 49.04^{a}	262.49 ± 51.37^{b}	263.88 ± 52.27^{b}	< 0.0001
MPV (fl)	8.13 ± 0.77	8.15 ± 0.81	8.12 ± 0.73	8.12 ± 0.56	0.633
FPG (mg/dl)	88.67 ± 16.35	83.87 ± 7.31^{a}	90.89 ± 10.40^{b}	$137.78 \pm 46.99^{\circ}$	< 0.0001
HbA1c (%)	5.64 ± 0.59	5.36 ± 0.20^{a}	5.85 ± 0.20^{b}	$7.63 \pm 1.59^{\circ}$	< 0.0001
LDLc (mg/dl)	119.75 ± 30.52	114.18 ± 29.42^{a}	126.69 ± 30.44^{b}	$133.62 \pm 28.94^{\circ}$	< 0.0001
HDLc (mg/dl)	53.26 ± 13.33	54.05 ± 12.21^{a}	52.56 ± 14.77^{a}	48.67 ± 13.05^{b}	< 0.0001
Smoking					0.001
Nonsmoker	1898 (61.3%)	1131 (63.4%)	708 (59.4%)	59 (48.8%)	
Current smoker	365 (11.8%)	207 (11.6%)	134 (11.2%)	24 (19.8%)	
Ex-smoker	835 (27.0%)	447 (25.0%)	350 (29.4%)	38 (31.4%)	

Table II.	Multiple linear	regression	analyses (of the	relationship	between	MPV	(as dependent	variable)	and FPG	(as in	dependent	variable)
according	to glucose tolera	ance status	in men ar	d wo	men.								

	NG (n = 1,785)		IH (n=	= 1,192)		Diabete	6	
	Coefficient		27.	Coefficien	Coefficient		Coefficient		27).
	$\beta \pm SE$	Р	R^2	$\beta \pm SE$	Р	R^2	$\beta \pm SE$	Р	R^2
Men									
Model 1	-0.127 ± 0.034	< 0.0001	0.014	-0.067 ± 0.028	0.015	0.015	0.012 ± 0.027	0.671	0.022
Model 2	-0.125 ± 0.035	< 0.0001	0.018	-0.068 ± 0.028	0.017	0.030	0.012 ± 0.028	0.664	0.122
Model 3	-0.112 ± 0.033	< 0.0001	0.109	-0.072 ± 0.027	0.007	0.130	0.013 ± 0.029	0.665	0.145
Women									
Model 1	-0.141 ± 0.035	< 0.0001	0.019	-0.121 ± 0.036	0.001	0.029	0.109 ± 0.032	0.002	0.279
Model 2	-0.129 ± 0.035	< 0.0001	0.026	-0.125 ± 0.036	0.001	0.032	0.112 ± 0.034	0.003	0.296
Model 3	-0.102 ± 0.034	0.003	0.132	-0.111 ± 0.035	0.002	0.100	0.097 ± 0.037	0.016	0.442

Notes: Model 1: adjusted by age. Model 2: adjusted by age, body mass index, systolic and diastolic blood pressure, systolic and diastolic blood pressure, smoking, LDL cholesterol, HDL cholesterol, and platelet count. All of the continuous variables were logarithmic transformed for analysis.

NG, HbA1c < 5.7% and FPG < 100 mg/dl; IH, $5.7\% \le$ HbA1c < 6.5% or 100 mg/dl \le FPG < 126 mg/dl; diabetes, HbA1c $\ge 6.5\%$ or FPG ≥ 126 mg/dl. FPG, fasting plasma glucose; IH, intermediate hyperglycemia; MPV, mean platelet volume; NG, normal glucose tolerance; SE, standard error.

Mean platelet volume(MPV) : a parameter mirroring in vivo platelet activation

syndrome, and each component of	f the metabolic syndron	1e	metubolic
Characteristic	Present	Absent	Р
Diabetes	8.20 (7.62-8.82)	8.06 (7.55-8.65)	0.0073
Metabolic syndrome	8.09 (7.58-8.74)	8.07 (7.55–8.69)	0.2372
Abdominal obesity	8.09 (7.58-8.71)	8.05 (7.54-8.63)	0.0262
High blood pressure	8.08 (7.57-8.73)	8.06 (7.55-8.63)	0.0665
Abnormal glucose metabolism	8.10 (7.58-8.75)	8.10 (7.63-8.72)	0.7063
Low HDL cholesterol	8.09 (7.58-8.70)	8.06 (7.55-8.68)	0.0435
Hypertriglyceridemia	8.06 (7.55–8.63)	8.07 (7.56-8.71)	0.4646

Table 1_MPV levels (f1) according to the presence or absence of diabetes the metabolic

Data are presented as median (IQR). P values were obtained by linear regression.

Figure 1—Prevalence of diabetes is shown stratified by mean MPV quartiles. The SE for the prevalence of diabetes is 0.7 in the 1st MPV quartile, 0.7 for the 2nd MPV quartile, 0.5 for the 3rd MPV quartile, and 0.7 for the 4th MPV quartile.

Diabetes Care 2012;35:1074-1078

Proportion of reticulated platelets

	MS subjects (n = 50)	Control subjects (n = 50)	P
Age (y)	44.1 ± 9	39.7 ± 7	.003
Female (%)	40 (80%)	40 (80%)	NS
BMI (kg/m ²)	34.5 ± 8	24.1 ± 3	≤.0001
Waist girth (in)	41.0 ± 6	27.1 ± 5	≤.0001
HDL (mg/dL)	46.5 ± 15	52.9 ± 7	.05
LDL (mg/dL)	130.8 ± 38	111.9 ± 11	.04
Cholesterol (mg/dL)	210.0 ± 45	163.1 ± 20	.002
TG (mg/dL)	161.7 ± 81	95.6 ± 26	.04
Fasting glucose (mg/dL)	114.7 ± 46	89.3 ± 6	.04
hs-CRP (mg/L)	4.4 ± 4	1.4 ± 2	≤.0001
SBP (mm Hg)	138.1 ± 11	113.2 ± 15	≤.0001
DBP (mm Hg)	82. ± 11	70.6 ± 9	≤.0001
Current smokers (%)	3 (6%)	3 (6%)	NS
Alcohol consumption * (%)	3 (6%)	3 (6%)	NS

BMI, Body mass index; LDL, low-density lipoprotein; TG, triglycerides; SBP, systolic blood pressure; DBP, diastolic blood pressure. *Alcohol consumption >1 drink per week.

Fig. 2. Correlation of 1 μ g mL⁻¹ collagen-induced (A) and 5 μ M ADP-induced (B) platelet aggregation to % reticulated platelets.

Am Heart J 2008; 156: 1002 e1-7

Platelet derived microparticles(PMP)

: a membrane vesicle released from activated platelet

Table 1 Baseline clinical charact	eristics						
	Control group	Obese non-diabetic group	ie. 	PMP (%)			
n (F:M)	37 (21:16)	49 (24:25)	р	15 1			
Age, year	49.2 ± 1.8	50.6 ± 1.4	.534				
BMI, kg/cm ²	22.8 ± 0.2	27.4±0.3	<.001			•	r = 0.536
Waist circumference, cm	87.9 ± 0.8	96.6 ± 0.8	<.001			•	1 - 0.550
Fat tissue mass, kg	15.7 ± 0.6	22.1 ± 0.5	<.001			•	<i>p</i> < .001
Visceral fat area, cm ²	78.0±8.7	122.8 (77.3-162.9)	<.001	10			Γ
Subcutaneous fat area, cm ²	137.6±10.8	217.6±10.2	<.001	10	• •		
Systolic blood pressure, mm Hg	122.3 ± 1.8	131.9±2.6	.003		•		•
Diastolic blood pressure, mm Hg	78.7 ± 1.4	85.0 ± 1.6	.004		. •	· ·/	/
Fibrinogen, mg/dl	242.7 ± 8.0	302.2±8.9	<.001	•	.'		
Total cholesterol, mg/dl	214.4±5.6	215.9 ± 5.4	.851	•	1.1.1		•
Triglycerides, mg/dl	78.0 (57.0-136.0)	106.0 (67.0-143.0)	.098	54	· · /	••	
HDL-cholesterol, mg/dl	61.0 (52.0-75.0)	55.3±1.7	.026		<u>~</u> ¥	'	
LDL-cholesterol, mg/dl	131.5±6.1	136.1±4.8	.551	بين ا		•	
Fasting glucose, mg/dl	88.9 ± 1.4	96.3±1.5	.001		V. V.	٠	
Hemoglobin A1c, %	4.89±0.1	5.00 (4.80-5.60)	.033				BMI (kg/m ²)
PAI-1 activity, ng/ml	0.42 (0.18-0.57)	0.54 (0.34-1.05)	<.001	0	· .		
t-PA antigen, ng/ml	5.47 ± 0.3	6.73 (5.34-7.78)	.009	0			
PMP, %	2.89 (2.16-4.73)	5.70 (4.07-7.22)	<.001	20	25	- 30	35

Data are mean \pm SEM or median (p25-p75).

HDL, high-density lipoprotein; LDL, low-density lipoprotein; PAI-1, plasminogen activator inhibitor; t-PA, tissue-type plasminogen activator; PMP, platelet derived microparticle.

Thromb Res 2007; 119: 45-53

11-dehydro-TXB₂ **excretion** : a major enzymatic metabolite of TX

The *H* statistic was calculated by the Kruskal-Wallis test. The error bars represent minimum and maximum values, the heavy horizontal rules indicate median values, and the ends of the boxes indicate interquartile range.

*P<.001, gynoid and android vs nonobese. +P<.001, android vs gynoid.

Circles and lines connecting circles represent metabolite measurements performed in each participant; dotted lines indicate the range of metabolite excretion in nonobese women.

Differences between before and after weight loss program were analyzed by Wilcoxon signed-rank test.

Other markers : sP-selectin, sCD40L, prothrombin fragment 1+2

	Normal weight	Overweight and	P-value
	(n = 17)	obese $(n = 33)$	
Age (years)	$\textbf{34.5} \pm \textbf{9.78}$	$\textbf{36.2} \pm \textbf{10.3}$	ns
Body mass index $(kg \cdot m^{-2})$	22.4 ± 1.41	$\textbf{33.8} \pm \textbf{4.84}$	< 0.001
Waist circumference (cm)	79.9 ± 5.31	106.3 ± 11.6	< 0.001
Fasting plasma glucose (mg/dl)	$\textbf{82.6} \pm \textbf{5.44}$	$\textbf{89.3} \pm \textbf{10.5}$	< 0.05
Fasting plasma insulin (µUI/ml)	12.1 ± 4.18	$\textbf{21.6} \pm \textbf{10.7}$	< 0.001
HOMAIR	2.46 ± 0.90	$\textbf{4.70} \pm \textbf{2.23}$	< 0.001
Triglycerides (mg/dL)	$\textbf{65.16} \pm \textbf{25.7}$	$\textbf{81.6} \pm \textbf{28.5}$	ns
Total cholesterol (mg/dL)	$\textbf{172.5} \pm \textbf{29.5}$	$\textbf{182.6} \pm \textbf{30.5}$	ns
HDL-cholesterol (mg/dL)	$\textbf{51.7} \pm \textbf{10.0}$	49.1 ± 11.6	ns
Systolic blood pressure (mmHg)	$\textbf{108.8} \pm \textbf{6.96}$	$\textbf{118.2} \pm \textbf{10.5}$	< 0.01
Diastolic blood pressure (mmHg)	$\textbf{69.1} \pm \textbf{7.12}$	77.9 ± 5.47	< 0.001
sP-selectin (ng/ml)	63.1 ± 16.4	77.9 ± 21.7	< 0.05
PAI-1 antigen (ng/ml)	12.9 ± 10.2	31.9 ± 17.1	< 0.001
vonWillebrand factor antigen (%)	$\textbf{96.9} \pm \textbf{25.9}$	$\textbf{113.3} \pm \textbf{24.8}$	<0.05
Fibrinogen (mg/dL)	$\textbf{280.7} \pm \textbf{31.2}$	$\textbf{362.2} \pm \textbf{68.2}$	< 0.001

Fig. 1 Correlation between sCD40L and F_{1+2} in metabolic syndrome patients (n=106)

Nutr Metab Cardiovasc Dis 2008; 18: 227–232 Diabetologia 2006; 49: 1169–1174.

Factors associated platelet hyperactivity in obesity and MS

Inflammation

- Platelet activation is a common feature in inflammatory diseases and the activation of platelets by inflammatory triggers may be a critical component of atherothrombosis.
- Numerous receptors of proinflammatory molecules are expressed on platelet surface, constitutively or after platelet activation.

Circ Res 2007; 100: 27-40

Hs-CRP and sCD40L are directly related to BMI in MS patients

40 -

Pearson correlation test evaluated in MS patient	between hs-CR ts	RP/sCD40L a	nd all other pa	arameters								
Variable	hs-C	RP	sCD	40L		•						
	r	Р	r	Р	30 -							
Age (y)	0.00	.932	-0.04	.414		- 0						
BMI (kg/m^2)	0.23	.000	0.14	.017								
Waist (cm)	0.19	.001	0.06	.296	e		°					
WHR	-0.03	.599	-0.05	.415	Ö 20 -		_ u					
SBP (mm Hg)	0.03	.658	0.02	.737	hs.							
DBP (mm Hg)	0.005	.402	-0.05	.345								
FG (mg/dL)	0.13	.026	0.04	.523			 					
PPG (mg/dL)	0.14	.018	0.05	.362			, ⁶ , ⁻ -					
TC (mg/dL)	0.02	.688	0.04	.529	10 -							
TG (mg/dL)	0.09	.127	-0.30	.641		۲ o ۲						
LDL-C (mg/dL)	0.03	.573	0.04	.462								
HDL-C (mg/dL)	-0.14	.016	0.00	.963								
HbA_{1c} (%)	0.20	.001	0.02	.695	0							
WBC (×1000/mm ³)	0.15	.011	0.13	.034	Ő	10 20	30 40 50					
Platelets	0.09	.099	0.19	.001	A		BMI					

Table 2

Metabolism 2010; 59: 305-313

60

Insulin resistance

- The finding that human platelets have insulin receptors that modulate platelet function led to the hypothesis that platelets were sites of insulin resistance.
- Physiologic actions exerted by insulin on platelet function
 1) reduction of pro-aggregatory properties of agonist
 2) activation of endothelial NO synthase
 3) increased NO formation and intra-platelet cAMP concentration
 - 4) sensitization of platelets to the inhibitory action of NO synthase

Biochem Biophys Res Commun 1988; 157: 1190–1196 Diabetes 1988; 37:780–786. Diabetes 1997; 46: 742–749, Diabetes 1995; 44: 1318–1322

Anti-aggregating effect is blunted in obesity

Figure 1 (a) Concentration-dependent effect of a 3-min incubation with the stable prostacyclin (PGI₂) analogue Iloprost (0·31–5 nmol L⁻¹) on Adenosine-5-diphosphate sodium salt (ADP)-induced platelet aggregation in controls (n = 15) and obese subjects (n = 16). Data are expressed as percent of the aggregation in the absence of Iloprost. Significance is described in Results. (b) Concentration-dependent effect of a 3-min incubation with sodium nitroprusside (SNP; 5–100 µmol L⁻¹) on ADP-induced platelet aggregation in controls (n = 15) and obese subjects (n =16). Data are expressed as percent of the aggregation in the absence of SNP. Significance is described in Results.

Figure 3 Concentration-dependent effect a 3-min incubation with of sodium nitroprusside (SNP) $(10-100 \ \mu\text{mol } \text{L}^{-1})$ on intraplatelet guanosine 3',5'-cyclic monophosphate (cGMP) levels (a) and cyclic nucleotides adenosine 3',5'-cyclic monophosphate (cAMP) levels (b) in controls (*n* = 15) and obese subjects (*n* = 16). Data are expressed as percent of the values in the absence of SNP. Significance is described in Results.

Eur J Clin Invest 2004; 34: 482-489

Insulin resistance as a determinant of platelet activation in Obese patients

Table 2. Spearman's Correlation Coefficients Among the various rarameters Analyzed in 40 Obese vvoluen									0 2100
	CD40L	CRP	BMI	WHR	Adiponectin	∆AIR _G	DI	S _I	iu 1800
U-11-dehydro-TXB ₂	0.66	0.67	0.20	0.32	-0.56	0.16	-0.37	-0.72	crea
	p < 0.0001	p < 0.0001	p = 0.206	p = 0.043	p < 0.0002	p = 0.315	p = 0.017	p < 0.0001	P 1500
CD40L	_	0.55	0.26	0.21	-0.47	0.41	-0.18	-0.73	u/ɓ
		p < 0.0003	p = 0.109	p = 0.188	p < 0.003	p = 0.0085	p = 0.257	p < 0.0001	 ∾ 1200
CRP	—	—	0.11	0.16	-0.64	0.09	- <mark>0.3</mark> 9	-0.65	EX.
			p = 0.489	p = 0.326	p < 0.0001	p = 0.555	p = 0.012	p < 0.0001	ό ann
BMI	—	—	-	0.55	-0.02	0.19	0.11	-0.02	Jar Jar
				p < 0.0003	p = 0.874	p = 0.240	p = 0.487	p = 0.904	ehy oo
WHR	—	—	—	—	-0.03	0.01	0.01	-0.04	P 600
					p = 0.837	p = 0.964	p = 0.937	p = 0.799	Ę
Adiponectin	-	-	82	<u> </u>	-	-0.016	0.48	0.83	La 300
						p = 0.316	p < 0.002	p < 0.0001	lrin
∆AIR _G		_	1 <u></u> 1	<u> </u>		_	0.64	-0.28	_ 0
9							p < 0.0001	p = 0.0833	
DI index		_	1	_	_	-	-	0.50	
								p < 0.001	

ΔAIR_G = incremental acute insulin response; BMI = body mass index; CD40L = CD40 ligand; CRP = C-reactive protein; DI = disposition index; S_I = insulin-sensitivity index; U-11-dehydro-TXB₂ = urinary 11-dehydro-thromboxane B₂; WHR = waist-to-hip ratio.

Am Coll Cardiol 2006; 48: 2531–2538

Adipokines - Leptin

Figure 4

Leptin promotes murine platelet aggregation in response to ADP. In vitro aggregation studies of mouse PRP (3×10^8 platelets/ml) were performed using a microplate reader. Displayed are the mean values ± 1 SD from measurements performed in triplicate. PRP from *ob/ob* (**a**) and WT (**b**) mice was stimulated by the addition of increasing concentrations of ADP in the absence (dashed lines) and presence (continuous lines) of 100 ng/ml leptin, respectively. **P* < 0.001 for the aggregation of platelets from *ob/ob* (**c**) and *db/db* (**d**) mice stimulated with 0.5 μ M ADP. The continuous lines represent the aggregation trace of PRP in response to 0.5 μ M ADP alone (filled squares). The dashed lines represent platelet aggregation induced by the same concentration of ADP after preincubation with 10 (open squares), 100 (triangles), and 500 (circles) ng/ml leptin, respectively.

J Clin Invest 2001;108: 1533–1540 Diabetes 1999; 48: 426–429

Adipokines - Adiponectin

10.0

Figure 3. Enhanced platelet aggregation in APN-KO mice. Platelet aggregation in PRP obtained from WT or APN-KO mice. PRP (300×10³/µL) obtained from WT (black line) or APN-KO mice (gray line) was stimulated with ADP (a; n=4), collagen (b; n=4), or PAR4-TRAP (c; n=3). As compared with WT mice, platelet aggregation was enhanced in APN-KO mice at low concentrations of agonists.

Figure 4. Effects of in vitro supplementation of adiponectin or recombinant adiponectin on the enhanced platelet aggregation in APN-KO mice. (A) One volume of PRP from APN-KO mice was mixed with ≈4 volumes of PPP from APN-KO mice injected with Ad-Bgal (black line) or Ad-APN (gray line) to obtain a platelet concentration of 300×103/µL. Platelets were stimulated with indicated agonists (n=4). (B) Mouse recombinant adiponectin (40 µg/mL, gray line) or PBS (black line) was added to PRP from APN-KO mice. Platelets were adjusted to 300×10³ platelets/ μ L and stimulated with indicated agonists (n=4).

Arterioscler Thromb Vasc Biol 2006; 26: 224–230.

Adipokines - Adiponectin

Oxidative stress

A growing body of evidence suggests that increased oxidative stress in white adipose tissue is central to the pathogenesis of cardiovascular disease in MS.

The molecular mechanism of oxidative stress to adipocytes remains unclear and appears to be multifactorial.

Antioxid Redox Signal 2011; 15: 1911–1926

Oxidative stress

Activated platelet produce intracellular ROS

Blood 2005; 106: 2757–2760

Interventional study with antioxidants

Figure 5. Effect of vitamin E supplementation on urinary excretion of 11-dehydro-TXB₂. Dots depict data points from duplicate determinations made either before treatment (baseline) or after vitamin E administration (600 mg/d for 2 weeks). Horizontal lines represent the mean values for the whole group of patients. *P=.0015.

Figure 3. Impact of vitamin E supplementation on soluble P-selectin (top) and plasma vWF (bottom). Dots depict data points from duplicate determinations made either before treatment (baseline) or after vitamin E administration (600 mg/d for 2 weeks). Horizontal lines represent the mean values for the whole group of patients. *P=.001; †P=.001.

Circulation 1998; 97: 953–957

Effects of anti-platelet therapy in metabolic syndrome

Anti-obesity therapy

Lifestyle modification Anti-obesity drug Bariatric surgery

Insulin sensitizer Anti-diabetic drug

Anti-platelet agent

Lifestyle modification

Table 4. Cardiovascular Risk Factors at Baseline and at 2 Years*

	Interv	ention Group (n = 60)		Co	ntrol Group (n =				
Risk Factors	Baseline	2 Years	Mean Change	P Value	Baseline	2 Years	Mean Change	P Value	Corrected Difference (95% CI)†	P Value at 2 Years
Weight, kg	95 (9.4)	81 (7.5)	-14	<.001	94 (9.2)	91 (9.0)	-3	.01	-11 (-14 to -8)	<.001
Body mass index‡	35 (2.3)	30 (2.1)	-5.2	<.001	34 (2.4)	34 (2.4)	-1	.04	-4.2 (-6.4 to -2)	<.001
Waist-hip ratio	0.86 (0.07)	0.78 (0.07)	-0.08	<.001	0.87 (0.07)	0.85 (0.07)	-0.02	.03	-0.06 (-0.09 to -0.03)	.008
SBP, mm Hg	124 (8.5)	121 (8.4)	-3	.01	124 (7.9)	122 (7.8)	-1.0	.15	-2 (-3.5 to -0.5)	.009
DBP, mm Hg	85 (4.7)	82 (4.6)	-3	.01	84.5 (4.9)	83.2 (4.5)	-1.3	.27	-1.7 (-3 to -0.4)	<.001
Glucose, mg/dL	106 (14)	97 (13)	-9	.01	105 (13)	103 (11)	-2	.16	–7 (–9 to –5)	<.001
Insulin, µU/mL	14 (4)	9 (3)	-5	.02	14 (4)	12 (3)	-2	.02	-3 (-5 to -1)	.009
HOMA‡	3.6 (0.4)	2.3 (0.3)	-1.3	.02	3.7 (0.5)	3.3 (0.4)	-0.4	.02	-0.9 (-1.3 to -0.5)	.008
TC, mg/dL	197 (62)	193 (58)	-4	.04	193 (23)	193 (23)	0	.50	-4 (-12 to 4)	.13
HDL-C, mg/dL	46 (12)	54 (12)	+8	.03	46 (12)	46 (12)	0	.40	+4 (2 to 6)	.02
Triglycerides, mg/dL	142 (44)	123 (35)	-19	.04	150 (53)	142 (44)	-8	.30	-12 (-18 to -5)	.04
FFA, mmol/L	581 (102)	419 (63)	-162	.01	562 (98)	523 (85)	-39	.11	-123 (-200 to -53)	.01
IL-6, pg/mL§	4.3 (1.9-9.0)	2.9 (1.1-6.5)	-1.4	.01	4.1 (2.0-9.0)	3.8 (2.1-8.9)	-0.3	.15	-1.1 (-1.7 to -0.6)	.009
IL-18, pg/mL§	225 (185-291)	157 (112-212)	-68	.02	217 (183-289)	206 (165-274)	-11	.24	-57 (-100 to -12)	.02
Adiponectin, µg/mL	5.6 (2.2)	8.3 (2.9)	+2.7	.02	5.4 (2.1)	5.9 (2.1)	+0.5	.13	+2.2 (1.0 to 3.5)	.01
CRP, mg/L§	3.2 (1.5-8.4)	2.1 (0.9-7.1)	-1.1	.01	3.4 (1.4-8.3)	3.1 (1.3-8.2)	-0.3	.19	-0.8 (-2.0 to -0.4)	.008

Abbreviations: CI, confidence interval; CRP, C-reactive protein; DBP, diastolic blood pressure; FFA, free fatty acids; HDL-C, high-density lipoprotein cholesterol; HOMA, homeostatic model assessment of insulin sensitivity; IL-6, interleukin 6; IL-18, interleukin 18; SBP, systolic blood pressure; TC, total cholesterol.

SI conversion factors: see Table 1.

*Data are presented as mean (SD) unless otherwise indicated; †Intervention group minus control group; ‡For definitions, see Table 1 footnotes; §Data are presented as median (interquartile range).

Orlistat

Table 3. Anthropometric indices, biochemical, and hormonal levels in groups A1 and A2, before and after intervention

	Group A	1(Diet plus orlist	at)	Gro	Group A2 (Only Diet)			
Parameter	Before	After	P value	Before	After	P value		
Weight (Kg)	98.6±14.9	75.4±12.7	< 0.001	102.1±18.7	82.5 ±14.8	< 0.001		
BMI(Kg/m ²)	37.2±5.3	28.42±4	< 0.001	38.5±7	30.9±5.7	< 0.001		
W/H ratio	0.9	0.8	< 0.001	0.9	0,8	< 0.001		
Waist circumference(cm)	109.3±12.7	97.4±12.7	< 0.001	108.5 ± 10.6	94.1±9.4	0.028		
%body fat	43.3±5.4	31.4 ± 4.8	< 0.001	42.5±8.1	34.7±7.3	< 0.001		
%free fat mass	56.7±5	66.9±4.7	< 0.001	57.9±8.2	64.68±6.9	< 0.001		
Chol (mg/dl)	197.6±38.2	176.4 ± 32.2	0.002	209.5±43.7	169.7±27.2	< 0.001		
Trigl. (mg/dl)	127.7±46.8	89.9±23.1	< 0.001	141.5 ± 42.9	125 ± 40	0.002		
HDL (mg/dl)	40.8±10.7	44.3±8.3	NS	42.1±10.3	33.9±8.2	< 0.001		
LDL (mg/dl)	127.4±32.8	93.5±21.8	< 0.001	131.2 ± 43.9	116.9 ± 28.5	0.034		
hsCRP (mg/l)	9.3±5.5	4.1±2.8	< 0.001	8.5±3.9	6.6±3.3	0.007		
Insulin (IU/ml)	39.2±31.5	23.8 ± 18.8	< 0.001	41±30	26.9±18.3	< 0.001		
HOMA-IR	9.4±8.2	5.3 ± 4.1	< 0.001	10.1±8.2	6.5±4.6	< 0.001		
Leptin (ng/ml)	90.1±30	51.6±19.5	0.03	88.7±29.3	60.8±22.4	< 0.001		
IL-6 (pg/ml)	82.3±17	10.4±2	< 0.001	83±17	11.7 ± 3.1	< 0.001		
IGF-I (ng/ml)	102.9 ± 55.4	230.3±53.3	< 0.001	97±42.7	287.6±83.3	< 0.001		
TNF-α (pg/ml)	43±15.9	22.3±7.5	< 0.001	41.1±12.7	32.5±10.3	< 0.001		
Isoprostane (pg/ml)	5298.2±1778.7	1127.5 ± 467.1	< 0.001	5166.4±1787.2	1472.2 ± 506.4	< 0.001		
Peroxidase of glutathione (ng/ml)	22±9.8	52.3±15.2	< 0.001	22.3±9.5	48.9±14.1	< 0.001		
Resistin (ng/ml)	22.30±8.1	16.7±5.9	< 0.001	23.7±9.1	17±5.4	< 0.001		
Adiponectin (ng/ml)	17.29 ± 4.9	39.8±13.4	< 0.001	20.5 ± 6.2	35.3±21.8	< 0.001		

Chol: cholesterol; Trig: triglycerides; HDL: high density lipoprotein; IL-6: interleukin 6; hsCRP: C reactive protein; IGF-1: insulin like growth factor 1; TNF-α: Tumor necrosis factor α; HOMA-IR: homeostasis model assessment index; NS: Non significant. For SI units multiply for insulin by 7.175, for cholesterol, LDL and HDL by 0.02586, for triglycerides by 0.01536. Normal values (range): resistin; 7-16ng/ml, TNF-α; 1.2-7.8pg/ml, adiponectin 28.2-110ng/ml

Hormones (Athens) 2006; 5: 259–269

Bariatric surgery

Markers of inflammation in morbidly obese subjects before and after weight loss as a result of gastric surgery.

before surgery

after surgery

Arterioscler Thromb Vasc Biol 2003; 23: 1042–1047 Obes Surg 2006; 16: 709–715

Metformin

Figure 1. Platelet superoxide anion (O_2^-) production in treated patients (Group A: metformin, Group B: glibenclamide, Group C: diet) and healthy subjects (HS). *p<0.001 Group A vs Group B and Group C. **p<0.001 HS vs Group B and Group C Table 1. Clinical and metabolic data for the diabetic patients and healthy subjects (controls)

	Patient group	Patient group				
	A	B	(Controls		
iqe (vears)	57.4+9.8	62.9+10.6	60.7+7.5	59.2+8.5		
isease duration (years)	7.3+5.9	9.7+7.4	8.1+6.1			
MI (ka/m)	29.97 + 3.37	23.78 + 2.25	28.35 + 2.71	22.2+3.7		
16A1c (%)	7,29+2,1	7.04+2.1	6.99+0.5	4.55+0.3		
otal cholesterol (mg/dl)	213.26 + 39.9	195+40.5	210.5+18.1	181.76+18.1		
rialvcerides (ma/dl)	168+96.6	134.4+94.7	106.8+33.4	87.7+37.9		
lvcaemia (mg/dl)	165.2 + 44.3	134.7+42.8	127.47 + 15.7	83.3+6.5		
-peptide (ng/ml)	2.6±0.8	2.5±1.2	2.28±0.4	1.8±0.3		

BMI, body mass index; HbA1c, glycosylated haemoglobin.

Diabetes Metab Res Rev 2002; 18: 156–159

Metformin

Figure 1. Urinary excretion of 8-iso-PGF_{2 α} before and after 12 weeks metformin treatment (a) or gliclazide treatment. (b) Individual measurements of 8-iso-PGF_{2 α} excretion are represented for patients who achieved comparable metabolic control after metformin or gliclazide.

Figure 2. Urinary excretion of 11-dehydro-TXB₂ before and after 12 weeks metformin treatment (a) or 12 weeks gliclazide treatment. (b) Individual measurements of urinary 11-dehydro-TXB₂ excretion are represented for patients who achieved comparable metabolic control after metformin or gliclazide.

Table 3. Delta after-before treatment with metformin or gliclazide for vitamins A and E plasma concentration and urinary excretion of 11-dehydro-TXB₂ and 8-iso-PGF₂

	Metformin delta	Gliclazide delta	p (metformin vs gliclazide)*	p (metformin vs gliclazide)**
	0.4 ± 0.03	0.0 ± 0.4	0.008	0.031
Plasma vitamin E (µmol/L)	5.5 ± 7.9	0.6 ± 2.5	0.008	0.027
Urinary 8-iso-PGF _{2a} (pg/mg creatinine)	-119 ± 113	0.6 ± 156	0.030	0.048
Urinary 11-dehydro-TXB2 (pg/mg creatinine)	-437 ± 517	3.2 ± 216	0.010	0.008

*Multiple regression with stepwise variable selection (baseline HbA1c, HbA1c change, baseline BMI, BMI change, and QUICKI change tested as covariates).

**Multiple regression analysis with baseline HbA1c levels and change in HbA1c levels forced in. Vitamins A and E were log transformed.

Diabetes Metab Res Rev 2008; 24: 231–237

Anti-platelet agent in metabolic syndrome

- The platelet alterations described in central obesity and in the other insulin resistant states provide a rationale for antiplatelet therapy
- Obese patients have 'angrier' platelets whose consequences are higher rates of ischemic complications.
- This finding is further enhanced by the evidence for an impaired response to antiplatelet therapy in association with obesity.
- And also, insufficient suppression of platelet activation by aspirin is a predictor of cardiovascular events in high-risk patients.

Blunted aspirin action in obese patients

Table 2 Correlations between insulin sensitivity (mg/kg · min) determined by the euglycemic clamp technique and maximal aggregation with different concentrations of AA and ADP in the whole study group

	r	Р
AA 0.75 mmol/l after ASA	-0.67	< 0.001
AA 1 mmol/l after ASA	-0.68	< 0.001
AA 1.5 mmol/l after ASA	-0.63	< 0.001
ADP 1 µmol/l at baseline	-0.48	< 0.05
ADP 1.5 µmol/l at baseline	-0.48	< 0.05
ADP 1.5 µmol/l after ASA	-0.52	< 0.05
ADP 3 µmol/l after ASA	-0.45	< 0.05

Figure 1 Maximal aggregation at four concentrations of AA (a) and ADP (b) at baseline and after ASA 50 mg. *P < 0.05, **P < 0.01, ***P < 0.001 for obese vs nonobese after ASA 50 mg. +P < 0.05, ++P < 0.01, +++P < 0.001 for difference between aggregation at baseline and after ASA.

Int J Obes Relat Metab Disord 2003; 27: 907-911

Blunted aspirin action in metabolic syndrome

Table II. Platelet function in subjects with MS and healthy controls before and after aspirin

	Baseline		Post-	aspirin
	MS	Controls	MS	Controls
LTA—AA (%)	69.9 ± 29	77.2 ± 21	16.3 ± 13	9.6 ± 8*
LTA—collagen (%)	59.3 ± 27	62.3 ± 24	21.8 ± 15	12.7 ± 12^{-1}
LTA-5 ADP (%)	79.7 ± 18	84.5 ± 14	67.6 ± 13	61.4 ± 18
LTA-20 ADP (%)	85.4 ± 12	89.8 ± 8	79.6 ± 10	75.6 ± 19
VerifyNow (ARU)	623.5 ± 53	627.4 ± 42	470.9 ± 54	414.2 ± 46
P-Selectin ADP (MFI)	14.5 ± 5	$11.3 \pm 4^*$	13.2 ± 5	$10.6 \pm 4^{\$}$
GP IIb/IIIa activation (MFI)	6.3 ± 2	7.0 ± 3	6.4 ± 2	6.3 ± 3

*P = .002.

†P≤.001.

 $\ddagger P = .06.$

\$P = .006 for the comparison of subjects with MS vs controls.

Am Heart J 2008; 156: 1002 e1-7

Mechanism linking metabolic syndrome to impaired response to aspirin

Underdosing of drugs

Reduced bioavailability

Enhanced platelet turnover

Significant association between BMI and platelet function

Table II. Platelet Function at Baseline a	nd After Aspirin Among Nonobese :	and Obese Individuals		Table III. Residual Platelet Func Individuals (n=106)	ction After Aspirin 81 mg and	After 325 mg/d in	a Subset of Obese and Nor	obese
	Nonobese	Obese		Af	ter Aspirin 81 mg/d	After As	PIRIN 325 MG/D	P VALUE
Phenotype	BMI <30 kg/m ² (n=1184)	BMI ≥30 kg/m² (n=830)	<i>P</i> Value ^a	Nonzero aggregation to arachidoni Nonobese	c acid 0.5 mmol/L 9.38%		8.47%	.8612
Aggregation to collagen 1 ug/mL, ohms				Obese Aggregation to collagen 1 µg/ml.	19.05%	1	10.00%	.2466
Raseline	19.6 (5.5)	20.2 (6.0)	02	Nonobese	4.27 (3.90)	4.	53 (5.13)	.7542
After achirin	61 (52)	67 (55)	008	Obese Aggregation to ADP 10 µmol/L.	4.17 (3.93)	4.5	35 (4.97)	.4722
Change	12.6(6.5)	(0.7 (0.0))	.000	Nonobese	11.16 (5.89)	11.	54 (4.33)	.6439
Change	-13.4(0.3)	-13.5 (7.0)	.0/	Obese	11.60 (4.52)	11.	73 (4.61)	.8607
Aggregation to ADP 10 µmol/L, ohms			103360	Nonobese	67.86 (73.2)	56.	22 (82.5)	.0399
Baseline	12.4 (5.8)	13.0 (6.03)	.01	Obese	46.67 (24.4)	47.7	76 (42.33)	. <mark>9</mark> 798
After aspirin	11.8 (6.0)	13.1 (6.0)	<.0001	Abbreviation: ADP, adenosine dipl	hosphate.			
Change	-0.538 (5.3)	0.130 (4.8)	.003	Table V. Multiple Linear Regress	ion Models for Urinary Throm	boxane Metabolites	(TxM) Before and After As	pirin Therapy
Aggregation to arachidonic acid 0.5 mmol	l/L, ohms			(N=2014)				
Baseline	15.5 (6.5)	16.5 (6.5)	.0003		Baseline	i i	AFTER ASPI	IRIN
After aspirin (nonzero aggregation)	4.9%	8.3%	.002		β (SE)	P VALUE ^a	β (SE)	P VALUE ^a
Urinary thromboxane B2, ng/mmol creati	inine			Body mass index, kg/m ²	0.02 (0.004)	<.0001	0.01 (0.004)	.0009
Raseline	235 5 (581 5)	2546 (530.2)	002	Female sex	0.2 (0.06)	.001	0.1 (0.05)	.006
Afree continin	40.0 (07.2)	54 4 (102.0)	.002	Age, y White race	0.00/(0.002)	.003	0.005 (0.002)	.02
After aspirin	49.9 (97.5)	54.4 (102.0)	005	Current smoker	0.3 (0.07)	.5	0.3 (0.06)	.0
Change	-183.0 (579)	-207.6 (552)	.013	Systolic blood pressure, mm Hg	-0.0006(0.002)	8	-0.0007(0.002)	.7
Aspirin resistance ^b (%)	20.5	26.4	.002	Glucose, mg/dL	0.0006 (0.001)	.6	0.001 (0.0009)	.3
		(and 1)	united in	Total cholesterol, mg/dL	-0.0004 (0.0007)	.5	-0.0006 (0.0006)	.3
Abbreviations: ADP, adenosine diphospha	te; BMI, body mass index. All result	ts are mean (SD) unless otherwise i	noted.	Fibrinogen mg/dL	0.00004 (0.0003)	.9	-0.0005 (0.0002)	.8
^a t tests or χ^2 on log-transformed variables. ^b Upper quartile of urinary thromboxane metabolite. ⁹				^a Adjusted for nonindependence of	families using the generalized e	stimating equation	method.	

Prev Cardiol 2010; 13: 56-62

Increased platelet turnover

Fig. 2. Correlation of 1 μ g mL⁻¹ collagen-induced (A) and 5 μ M ADP-induced (B) platelet aggregation to % reticulated platelets.

J Thromb Haemost 2007; 5: 490–496

Increased platelet turnover

	Baseline platelet aggregation (%)			Postaspirin platelet aggregation (%)				
	Upper tertile	Middle tertile	Lower tertile	<i>P</i> -value*	Upper tertile	Middle tertile	Lower tertile	P-value*
ADP 5 µм	83 ± 14	84 ± 12	72 ± 20	0.06	67 ± 9	60 ± 8	54 ± 11	0.0002
ADP 20 µм	90 ± 4	91 ± 4	$86~\pm~10$	0.14	81 ± 6	80 ± 7	75 ± 7	0.008
Arachidonic acid 1.5 mM	72 ± 28	64 ± 32	67 ± 29	0.57	8 ± 7	7 ± 5	5 ± 4	0.1
Collagen 1.0 μ g mL ⁻¹	$80~\pm~7$	$77~\pm~16$	$69~\pm~22$	0.03	$24~\pm~8$	15 ± 8	8 ± 4	< 0.0001
*Upper vs. lower tertile, Student's <i>t</i> -test.								

 Table 2 Platelet aggregation measured by light transmittance aggregometry in tertiles of % reticulated platelets

Table 4 Serum thromboxane B_2 (TxB₂, ng mL⁻¹) synthesis in tertiles of % reticulated platelets

	Upper tertile	Middle tertile	Lower tertile	P-value*
Baseline TxB ₂	417 ± 157	387 ± 206	$351~\pm~195$	0.15
Postaspirin TxB ₂	5.5 ± 4	$4.8~\pm~2.7$	3.2 ± 2.5	0.03
Postaspirin TxB ₂ with ex vivo SC-560	$0.49~\pm~0.46$	$0.49~\pm~0.52$	$0.35~\pm~0.30$	0.35
Postaspirin TxB ₂ with ex vivo NS-398	$1.18~\pm~1.46$	$0.43~\pm~0.27$	$0.65~\pm~0.69$	0.2

*Upper vs. lower tertile, Mann-Whitney test.

Cox-1 and Cox-2

Figure 1. Platelet COX-2 expression in ET patients and healthy subjects. (A) Flow cytometric histograms of fluorescence intensity on platelets stained for COX-2 in a patient (gray) and a control subject (black). The plot of the patient is shifted to the right, indicating a higher expression of COX-2. (B) Individual values of Δ MFI (see "Platelet immunophenotyping and reticulated platelets" for details) for COX-2 in platelets from patients (n = 41) and controls (n = 22). Horizontal lines indicate medians.

Figure 3. Characterization of COX-2 expression and activity in platelets from ET patients. (A) Western blot analysis of platelet protein extracts for COX-1 and COX-2 in 4 patients and 1 healthy subject. Proteins were extracted from washed platelets and electrophoresed in 10% SDS polyacrylamide gel under reducing conditions. Gels were blotted onto nitrocellulose membranes, which were incubated with monoclonal antibodies against COX-1 or COX-2. Positivity was revealed by anti–mouse horseradish peroxidase–conjugated antibodies and ECL detection reagent. Protein bands were visualized using Kodak Biomax light film. (B) Correlation between COX-2 expression in platelets, expressed as ΔMFI , and the percentage of TO-positive platelets in 16 patients (\bullet) and 14 healthy subjects (\bigcirc). (C) Box-whisker plots representing whole blood TXB2 production in vitro, as reflected by serum TXB2, in samples from 41 ET patients incubated with vehicle (open box) or NS-398 (striped box) added in vitro, at V0. *P < .001 versus vehicle.

Blood 2010; 115: 1054–1061

Other proposed mechanism

Extraplatelet TXA2 generation

Aspirin-insensitive eicosanoid biosynthesis

Reduced platelet sensitivity to anti-aggregating effect of NO

Enhanced formation of lipid hydroperoxides limiting COX isoenzyme acetylation by aspirin

Blunted clopidogrel effect in obese patients

39% 59%

Figure 2. Individual values of 6 µM adenosine diphosphate-induced platelet aggregation at baseline and 24 hours following clopidogrel loading-dose in overweight (upper left) and normal weight (upper right) patients (adequate inhibition: solid line; suboptimal inhibition: plotted line). A suboptimal degree of platelet inhibition was observed in 59% of overweight (bottom left) and 26% of normal weight (bottom right) patients (p = 0.04). Values are expressed as means and standard deviations.

Table 3. Univariate analysis of inadequate inhibition of platelet aggregation following clopidogrel loading- dose

	<i>p</i> -value	Odds Ratio	95% CI
BMI ≥ 25 kg/m ²	0.03	0.25	0.07-0.90
Clinical status	0.58	1.41	0.41-4.81
Diabetes	0.19	0.42	0.11-1.53
Hypercholesterolemia	0.67	0.78	0.24-2.50
Smoking habit	0.47	1.60	0.50-5.10
Hypertension	0.75	1.20	0.38-3.75
Gender	0.29	2.70	0.44-16.20
Age (years)	0.60	1.02	0.96-1.08

BMI - body mass index

J Invasive Cardiol 2004;16(4):169-74

Image 5 of 5

Selective thromboxane receptor antagonist

Figure 2: Kaplan-Meier cumulative event curves for the primary composite endpoint of fatal or non-fatal ischaemic stroke, fatal or non-fatal myocardial infarction, and other vascular death (excluding haemorrhagic death) HR=hazard ratio.

	(n=9556)	(n=9544)	HR* (95% CI)
Primary composite endpoint			
Fatal or non-fatal ischaemic stroke, fatal or non-fatal MI, and other vascular death†	1091 (11%)	1062 (11%)	1-02 (0-94-1-12)
Secondary endpoints			
Secondary composite endpoint			
Any stroke (fatal or non-fatal), fatal or non-fatal MI, and other vascular death†	1151 (12%)	1122 (12%)	1-02 (0-94-1-11)
Stroke-related endpoints			
Fatal or non-fatal ischaemic stroke	781 (8%)	763 (8%)	1.02 (0.92-1.13)
Non-fatal ischaemic stroke	728 (8%)	724 (8%)	1.00 (0.90-1.11)
Fatal ischaemic stroke	64 (1%)	49 (1%)	1.30 (0.90-1.89)
Any stroke	842 (9%)	828 (9%)	1.01 (0.92-1.12)
Any fatal stroke	98 (1%)	78 (1%)	1.25 (0.93-1.69)
Number of patients with more than one stroke	104 (1%)	93 (1%)	(4 4))
MI-related endpoints			
Fatal or non-fatal MI	159 (2%)	129 (1%)	1.23 (0.98-1.56)
Non-fatal MI	140 (1%)	114 (1%)	1.23 (0.96-1.58)
Fatal MI	26 (<1%)	21 (<1%)	1.24 (0.70-2.20)
Mortality-related endpoints			
Other vascular death†	215 (2%)	224 (2%)	0.95 (0.79-1.15)
All-cause mortality	594 (6%)	587 (6%)	1.01 (0.90-1.13)
Cognition-related endpoints			
Incident dementia‡	162 (2%)	155 (2%)	1.05 (0.84-1.31)
Cognitive decline§	3301 (38%)	3392 (39%)	0.96 (0.90-1.02)
Tertiary endpoints			
Hospitalisation due to cardiac causes	464 (5%)	435 (5%)	1-07 (0-9 <mark>4-1</mark> -22)
Cardiac death	52 (1%)	54 (1%)	0.96 (0.66-1.41)
Disabling or fatal stroke	688 (7%)	698 (7%)	0.98 (0.88-1.09)
Revascularisation	313 (3%)	324 (3%)	0.97 (0.83-1.13)
Carotid revascularisation	22 (<1%)	26 (<1%)	0-84 (0-48-1-49)
Major lower limb amputation	33 (<1%)	21 (<1%)	1.57 (0.91-2.71)

Data are number of first events (%) and HR (95% CI). HR=hazard ratio. MI=myocardial infarction. * Odds ratio for cognition-related endpoints. †Vascular death excludes haemorrhagic death of any origin. ‡Number of patients without dementia at baseline: 9424 terutroban, 9428 aspirin. \$Number of patients without dementia at baseline and with available scores: 8761 terutroban, 8762 aspirin.

Table 2: Efficacy for primary, secondary, and tertiary endpoints

Lancet 2011; 377: 2013-22

Summarization

Thanks for your attention!!